Wet van lever

In dit artikel ontdek je wat de wet van de hefboomwerking is. We laten u ook een voorbeeld zien dat uitlegt hoe de wet van de hefboom de krachten beïnvloedt die erop inwerken. Bovendien kun je de wet van het hefboomeffect oefenen met stapsgewijze oefeningen.

Voordat we zien waar de wet van hefboomwerking uit bestaat, moeten we logischerwijs heel duidelijk weten wat een hefboom is. Daarom raden we u aan het volgende bericht te bezoeken voordat u verder gaat met de uitleg:

Wat is de wet van hefboomwerking?

De wet van de hefboom is een wet die de verschillende krachten die op een hefboom inwerken met elkaar in verband brengt. Daarom wordt de wet van de hefboom gebruikt om problemen met hefbomen op te lossen.

Meer specifiek zegt de wet van de hefboomwerking dat het product van kracht maal de lengte van uw arm gelijk is aan het product van weerstand maal de lengte van uw arm.

De wet van de hefboom stelt ons dus in staat weerstand, de kracht die wordt uitgeoefend door de last op de hefboom, wiskundig te relateren aan kracht, de kracht die moet worden uitgeoefend om de last te overwinnen.

Formule van de hefboomwet

De formule van de wet van de hefboom relateert op wiskundige wijze de kracht aan de weerstand van de hefboom. Meer specifiek stelt de wet van de hefboom dat kracht maal de machtsarm gelijk is aan weerstand maal de weerstandsarm.

formule van de wet van het hefboomeffect

Goud:

  • Steunpunt of steunpunt (F) : dit is het deel van de hefboom waarop deze blijft. Daarom ondersteunt het het volledige gewicht van de stang en de lichamen erboven.
  • Inspanning of kracht (P) : is de kracht die op de hendel wordt uitgeoefend om de belasting aan de andere kant tegen te gaan.
  • Belasting of weerstand (R) : is de kracht die moet worden overwonnen.
  • Power Arm (BP) : Dit is de afstand tussen de kracht en het steunpunt.
  • Weerstandsarm (BR) : Dit is de afstand tussen de weerstand en het steunpunt.

Merk op dat de wet van de hefboom alleen waar is als de hefboom in evenwicht is, dat wil zeggen als hij in rust is. Dus als de hefboom beweegt, geldt de hefboomvergelijking niet.

Voorbeeld van de wet van hefboomwerking

Als voorbeeld zullen we in deze sectie zien hoe de waarde van de kracht die moet worden uitgeoefend om de weerstand tegen te gaan, verandert afhankelijk van de lengte van de hefboomarmen.

Eerst zullen we zien wat er gebeurt als het steunpunt zich midden in de macht en weerstand bevindt:

wet van de hefboom voorbeeld 1

We passen de formule van de wet van de hefboom toe om de waarde van de kracht te berekenen:

P\cdot BP=R\cdot BR

P=\cfrac{R\cdot BR}{BP}

P=\cfrac{100\cdot 150}{150}

P=100 \ N

Dus als het draaipunt zich precies halverwege tussen de kracht en de weerstand bevindt, is de kracht die op de hefboom moet worden uitgeoefend gelijk aan de weerstand.

Ten tweede zullen we het geval analyseren waarin het steunpunt dichter bij de weerstand ligt dan bij de kracht:

wet van de hefboom voorbeeld 2

P\cdot BP=R\cdot BR

P=\cfrac{R\cdot BR}{BP}

P=\cfrac{100\cdot 100}{200}

P=50 \N

Dus als de krachtarm langer is dan de weerstandsarm, is de krachtwaarde kleiner dan de weerstandswaarde.

Ten slotte bestuderen we het geval waarin het steunpunt dichter bij de kracht ligt dan bij de weerstand:

voorbeeld van hefboomwet 3

P\cdot BP=R\cdot BR

P=\cfrac{R\cdot BR}{BP}

P=\cfrac{100\cdot 220}{80}

P=275 \ N

Concluderend: wanneer het steunpunt dichter bij de macht ligt dan bij de weerstand, moet er een kracht worden uitgeoefend die groter is dan de weerstand om de schaal in evenwicht te brengen.

Opgeloste oefeningen van de wet van hefboomwerking

Voordat u de oefeningen doet, raden wij u aan de volgende link te bezoeken waarin we de verschillende soorten hefbomen uitleggen, aangezien er voor elk type hefboom een oefening is en u duidelijk moet weten wat elk type is om de problemen op te lossen. .

Zie: Soorten hendels

Oefening 1

Een lichaam van 50 kg wordt naast een hefboom van de eerste graad geplaatst, gemaakt van een stijve staaf van 300 cm. Als de afstand tussen de last en het draaipunt 180 cm bedraagt, hoeveel moet het lichaam dat aan de andere kant van de hefboom staat dan wegen om in evenwicht te zijn?

De hefboom in dit probleem is van de eerste graad en we kennen alleen de weerstand (50 kg) en de weerstandsarm (180 cm). Omdat we echter de lengte van de staaf kennen, kunnen we de krachtarm berekenen door de totale lengte van de staaf af te trekken minus de lengte van de weerstandsarm:

BP=300-180=120 \text{ cm}

Vervolgens kunnen we de waarde van de kracht bepalen door de hefboomregel toe te passen:

P\cdot BP=R\cdot BR

We vervangen de gegevens in de formule:

P\cdot 120=50\cdot 180

En ten slotte lossen we het onbekende in de vergelijking op:

P=\cfrac{50\cdot 180}{120}

P=75 \text{ kg}

Oefening 2

In een kruiwagen plaatsen we een voorwerp van 70 kg op 50 cm van het steunpunt. Als het gedeelte waar de kruiwagen wordt vastgehouden zich 140 cm van het steunpunt bevindt, wat is dan de moeite die we moeten doen om het voorwerp met de kruiwagen te kunnen vervoeren?

De kruiwagen is een hefboom van de tweede graad, omdat de weerstand zich tussen het steunpunt en de kracht bevindt. Om het probleem op te lossen moeten we daarom de wet van de hefboomwerking toepassen:

P\cdot BP=R\cdot BR

We vervangen de gegevens die we kennen in de vergelijking:

P\cdot 140=70\cdot 50

En ten slotte lossen we het onbekende in de vergelijking op:

P=\cfrac{70\cdot 50}{140}

P=25 \text{ kg}

U moet dus een inspanning leveren die gelijk staat aan het tillen van 25 kg.

Oefening 3

Bij een hefboom van de derde graad moet een kracht gelijk aan 60 N worden uitgeoefend om een weerstand van 15 N op 80 cm van het draaipunt tegen te gaan. Bereken hoe ver van het steunpunt de kracht wordt uitgeoefend.

Bij dit hefboomprobleem van de derde graad wordt ons gevraagd de krachtarm te bepalen. Om het probleem op te lossen, moeten we dus de hefboomvergelijking toepassen:

P\cdot BP=R\cdot BR

We vervangen de gegevens die we kennen in de vergelijking:

60\cdot BP=15\cdot 80

En we lossen het onbekende op in de vergelijking:

BP=\cfrac{15\cdot 80}{60}

BP=20 \text{ cm}

De kracht moet daarom op 20 cm van het draaipunt worden aangebracht.

Leave a Comment

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Scroll to Top