Daya tarik

Artikel ini menjelaskan apa itu gaya tegangan dalam fisika dan cara menghitungnya. Anda akan menemukan contoh nyata gaya tegangan tali dan, sebagai tambahan, Anda akan dapat berlatih dengan latihan penyelesaian gaya gaya ini.

Apa itu gaya tegangan?

Gaya tarik adalah gaya yang dilakukan oleh tali, kabel, atau benda elastis apa pun ketika berada dalam keadaan tegang, artinya tidak dapat ditekuk.

Misalnya, ketika suatu gaya diterapkan pada kedua ujung tali, tali menjadi kencang dan oleh karena itu menimbulkan gaya tegangan. Di bawah pada bagian selanjutnya kita akan mempelajari secara rinci gaya tegangan yang dilakukan oleh tali.

Gaya tegangan diukur dalam newton (N) dan biasanya dilambangkan dengan huruf T. Selain itu, karena merupakan salah satu jenis gaya, gaya tegangan berbentuk vektor yang arahnya sejajar dengan perpanjangan tali atau kabel.

Contoh gaya tegangan

Mengingat definisi gaya tegangan, kami akan menganalisis contoh secara detail untuk memahami konsep dengan lebih baik.

Contoh khas gaya tarik adalah tali. Jika tidak ada gaya yang diberikan pada tali, tali akan tetap longgar sehingga tidak ada gaya tarik. Sebaliknya, jika suatu gaya diberikan pada masing-masing ujung tali, maka tali tersebut akan tetap kencang dan oleh karena itu akan memberikan gaya tarik pada setiap ujung tali.

Selanjutnya, jika tali dianggap benda tak bermassa dan tidak dapat berubah bentuk, maka gaya yang bekerja pada salah satu ujung tali diteruskan ke ujung tali yang lain, dan sebaliknya, gaya yang diberikan pada ujung kedua diteruskan ke ujung pertama. dari tali. tali. .

Perhatikan gambar berikut, gaya yang dilakukan oleh orang di sebelah kiri ( TA ) sama dengan gaya yang dilakukan oleh tali pada orang di sebelah kanan. Dan dengan cara yang sama, gaya yang dilakukan oleh orang di sebelah kanan (T B ) diteruskan ke orang di sebelah kiri.

kekuatan ketegangan

Permainan tarik tambang merupakan contoh nyata dari kehidupan sehari-hari dimana gaya tegangan disalurkan melalui tali.

Kesimpulannya, tali, kabel atau benda serupa digunakan untuk menyalurkan gaya dari satu benda ke benda lain.

Cara menghitung gaya tegangan

Langkah-langkah menghitung gaya tegangan adalah:

  1. Menguraikan gaya-gaya yang tidak bersifat vertikal maupun horizontal secara vektor. Dengan cara ini semua gaya akan bersifat vertikal atau horizontal.
  2. Gambarkan diagram benda bebas sistem, yaitu grafik semua gaya yang bekerja pada sistem.
  3. Tetapkan persamaan kesetimbangan sistem. Biasanya, satu persamaan harus dibuat untuk gaya horizontal dan persamaan lain untuk gaya vertikal.
  4. Selesaikan gaya tegangan dari persamaan dan hitung nilainya.

Ringkasnya, dalam fisika untuk menghitung gaya tegangan , kondisi kesetimbangan harus diterapkan . Dengan menyatakan persamaan keseimbangan, gaya tarik dapat diselesaikan sehingga nilainya dapat diketahui.

Di bawah ini adalah contoh langkah demi langkah gaya tegangan yang dihitung untuk melihat bagaimana hal ini terjadi:

  • Sebuah benda bermassa 65 kg digantung di langit-langit dengan seutas tali. Berapa gaya tarik yang harus dilakukan tali untuk menopang tubuh? Tali diasumsikan mempunyai massa yang dapat diabaikan dan tidak meregang.

Pertama-tama, perlu ditentukan gaya gravitasi bumi yang menarik benda. Untuk melakukan ini, kami menerapkan rumus gaya berat:

P=m\cdot g=65\cdot 9,81=637,65 \ N

Sekarang kita membuat diagram benda bebas. Dalam hal ini kita hanya mempunyai dua gaya vertikal: gaya tarik tali dan gaya beban.

latihan kekuatan ketegangan yang disengaja

Sekarang mari kita ajukan kondisi keseimbangan vertikal. Karena hanya ada satu gaya vertikal ke atas dan satu gaya vertikal ke bawah, agar benda tetap seimbang, kedua gaya tersebut harus sama:

\displaystyle\somme F_y=0

TP=0

T=P

T=637,65 \N

Latihan yang diselesaikan pada kekuatan ketegangan

Latihan 1

Diketahui sebuah benda tegar bermassa 12 kg yang digantung pada dua tali yang sudutnya ditunjukkan pada gambar berikut, hitunglah gaya yang harus dilakukan setiap tali agar benda tetap seimbang.

masalah kondisi keseimbangan pertama

Hal pertama yang perlu kita lakukan untuk menyelesaikan masalah jenis ini adalah menggambar diagram benda bebas dari gambar tersebut:

menyelesaikan pelaksanaan kondisi keseimbangan pertama

Perhatikan bahwa sebenarnya hanya ada tiga gaya yang bekerja pada benda yang digantung, yaitu gaya beban P dan tegangan tali T 1 dan T 2 . Gaya-gaya yang diwakili T 1x , T 1y , T 2x dan T 2y masing-masing merupakan komponen vektor dari T 1 dan T 2 .

Jadi, karena kita mengetahui sudut kemiringan tali, kita dapat menemukan ekspresi komponen vektor gaya tarik:

 T_{1x}=T_1\cdot \text{cos}(20º)

 T_{1y}=T_1\cdot \text{sin}(20º)

 T_{2x}=T_2\cdot \text{cos}(55º)

 T_{2y}=T_2\cdot \text{sin}(55º)

Di sisi lain, kita dapat menghitung gaya berat dengan menerapkan rumus gaya gravitasi:

P=m\cdot g=12\cdot 9,81 =117,72 \ N

Rumusan masalah menyatakan bahwa benda berada dalam keadaan setimbang, sehingga jumlah gaya vertikal dan jumlah gaya horizontal harus sama dengan nol. Jadi kita dapat menetapkan persamaan gaya dan menetapkannya sama dengan nol:

-T_{1x}+T_{2x}=0

T_{1y}+T_{2y}-P=0

Kita sekarang mengganti komponen ketegangan dengan ekspresi yang ditemukan sebelumnya:

-T_1\cdot\text{cos}(20º)+T_2\cdot \text{cos}(55º)=0

T_1\cdot \text{sin}(20º)+T_2\cdot \text{sin}(55º)-117.72=0

Dan terakhir, kita selesaikan sistem persamaan untuk mendapatkan nilai gaya T 1 dan T 2 :

\left.\begin{array}{l}-T_1\cdot 0,94+T_2\cdot 0,57=0\\[2ex]T_1\cdot 0,34+T_2\cdot 0,82-117 .72=0\end{array }\right\} \longrightarrow \ \begin{array}{c}T_1=69,56 \ N\\[2ex]T_2=114,74 \ N\end{array}[/ latex] 

<div class="wp-block-otfm-box-spoiler-end otfm-sp_end"></div>
<h3 class="wp-block-heading"> Exercice 2</h3>
<p> Comme le montre la figure suivante, deux objets sont reliés par une corde et une poulie de masses négligeables. Si l’objet 2 a une masse de 7 kg et que l’inclinaison de la rampe est de 50º, calculez la masse de l’objet 1 pour que l’ensemble du système soit dans des conditions d’équilibre. Dans ce cas, la force de frottement peut être négligée. </p>
<div class="wp-block-image">
<figure class="aligncenter size-full is-resized"><img decoding="async" loading="lazy" src="https://physigeek.com/wp-content/uploads/2023/09/probleme-dequilibre-des-forces.png" alt="problème d'équilibre translationnel" class="wp-image-295" width="299" height="240" srcset="https://physigeek.com/wp-content/uploads/2023/09/probleme-dequilibre-des-forces-300x241.png 300w, https://physigeek.com/wp-content/uploads/2023/09/probleme-dequilibre-des-forces.png 718w" sizes="(max-width: 300px) 100vw, 300px"></figure>
</div>
<div class="wp-block-otfm-box-spoiler-start otfm-sp__wrapper otfm-sp__box js-otfm-sp-box__closed otfm-sp__FFF8E1" role="button" tabindex="0" aria-expanded="false" data-otfm-spc="#FFF8E1" style="text-align:center">
<div class="otfm-sp__title"> <strong>voir la solution</strong></div>
</div>
<p> Le corps 1 est sur une pente inclinée, donc la première chose à faire est de vectoriser la force de son poids pour avoir les forces sur les axes de la pente : [latex]P_{1x}=P_1\cdot \text{sin}(\alpha)” title=”Rendered by QuickLaTeX.com” height=”340″ width=”2918″ style=”vertical-align: 0px;”></p>
</p>
<p class=

P_{1y}=P_1\cdot \text{cos}(\alpha)

Jadi, himpunan gaya yang bekerja pada keseluruhan sistem adalah:

latihan keseimbangan translasi terselesaikan

Rumusan masalah menyatakan bahwa sistem gaya-gaya berada dalam keadaan setimbang, sehingga kedua benda harus berada dalam keadaan setimbang. Dari informasi ini kita dapat mengajukan persamaan kesetimbangan kedua benda:

1\ \rightarrow \ \begin{cases}P_{1x}=T\\[2ex]P_{1y}=N\end{cases} \qquad\qquad 2 \ \rightarrow \ T=P_2[/latex ] Ainsi, la composante du poids de l'objet 1 incliné dans le sens de la pente doit être égale au poids de l'objet 2 : [latex]P_{1x}=P_2

P_1\cdot \text{sin}(\alpha)=P_2

Sekarang kita terapkan rumus gaya gravitasi dan sederhanakan persamaannya:

m_1\cdot g \cdot \text{sin}(\alpha) =m_2 \cdot g

m_1 \cdot \text{sin}(\alpha) =m_2

Terakhir, kita substitusikan datanya dan selesaikan massa benda 1:

m_1 \cdot \text{sin}(50º) =7

m_1 =\cfrac{7}{\text{sin}(50º)}

m_1=9,14 \ kg

Tinggalkan komentar

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Gulir ke Atas